Quenul n’entre ici s’il n’est géomètre ! La géométrie des figures, déjà évoquée, gagne elle aussi en abstraction au cycle 4 en s’éloignant de l’expérience sensible. Ce sont des triangles qu’on tenait auparavant dans la main après les avoir découpés et qui tiennent à présent tout entier dans les trois lettres ABC.
31 janvier 2009 6 31 /01 /janvier /2009 2211 Ouverture ce jour du site de la R. L. Trusatilès . . . Que nul n'entre ici s'il n'est géomètre * Même si vous n'êtes pas encore géomètre, mais cela ne saurait tarder, bienvenue sur le site de notre Loge Trusatilès. C'est le site d'une loge vivante qui travaille au Rite français. Vous y trouverez des articles sur la vie de la Loge - Rubrique Articles, des textes fondamentaux, des planches - Rubrique Pages, la liste des travaux en cours - Rubrique Travaux, la date de la prochaine tenue et des manifestations organisées par la Loge - Rubrique Ephéméride, des albums photos - Rubrique Albums, des liens vers... - Rubrique Sites à voir, ... Inscrivez-vous à la Newsletter, vous serez avertis, par mail, des mises à jour en temps réel. Orateur * La tradition veut que cette phrase ait été gravée à l'entrée de l'Académie, l'école fondée à Athènes par Platon. Mais que vaut cette tradition ? Notons tout d'abord que cette tradition ne nous est connue que par des sources très tardives, postérieures d'au moins 10 siècles à Platon elle est mentionnée par Jean Philopon, philosophe néoplatonicien chrétien qui vécut à Alexandrie au VIème siècle de notre ère et dont survivent plusieurs commentaires d'oeuvres d'Aristote, dans son commentaire du De Anima d'Aristoteet dont on est presque certain aujourd'hui qu'il n'est pas de Philopon; par Elias, un autre philosophe néoplatonicien alexandrin du VIème siècle de notre ère, postérieur à Jean Philopon et, comme lui, chrétien, dans son commentaire des Catégories d'Aristote; et aussi par Jean Tzetzès, auteur byzantin du début du XIIème siècle de notre ère, dans ses Chiliades VIII, 973, où on la trouve sous la forme complète. Les deux premières références proviennent de commentaires d'oeuvres d'Aristote, et de fait, on trouve le terme ageômetrètos chez lui, par exemple dans les Seconds analytiques, I, XII, 77b8-34, où le mot figure 5 fois en quelques lignes, mais il ne fait jamais référence, dans ses oeuvres conservées du moins, à cette inscription au fronton de l'Académie, où il étudia, enseigna et vécut près de 20 ans. V. M A. V. Commentaire de notre V.M. Al Ecker Avec un G majuscule comme Géométrie… Sans doute née sur les bords du Nil, la géométrie prendra sa vraie dimension de science dans le monde grec. A l'origine elle est l'art d'arpenter la terre, histoire de la mesurer en long, en large et en travers pour mieux répondre à l'une des grandes constantes du vivant, la possession d'un espace, bien sûr. Mais c'est aussi l'art de représenter, le plus rationnellement possible, le réel, afin d'en avoir une vue d'ensemble, et de lui donner, sinon un sens, au moins une dimension. C'est donc une manière concrète de conceptualiser le monde et l'abstraction mathématique, sachant que le scientifique le plus spéculatif ne rêve toujours que d'une chose voir le résultat de sa pensée. Ainsi, le simple ruban de Moebius, dans lequel le bas est en haut, et inversement, ne se comprend bien qu'en le voyant représenté. Aujourd'hui encore les cosmologistes les plus avancés sur les théories de la naissance de l'univers s'attachent néanmoins les services de puissants ordinateurs capables de "dessiner" les formes de leurs théories les plus échevelées. Ainsi, par exemple, Stephen Hawking eut-il besoin de son ami Roger Penrose pour se donner une "idée visible", à partir de ses théories mathématiques, de ce que pourrait être une singularité possible ayant participé à la création du monde. Platon conviait donc dans son Académie, non pas le notaire qui stabilise le droit, ni le géomètre en grec guéomètrès qui fige le territoire, mais bien l'arpenteur d'espaces, le gueometretos celui qui, en "géométrisant" au figuré, est capable d'exprimer le spectacle du cosmos, tant dans le domaine du visible que dans le monde des idées... RF BB TVFBB - dans Vie du blog-notes
QueNul N'entre Ici S'il N'est Géomètre - Recueil D'études En Droit Pénal De Bernard Durand pas cher En utilisant Rakuten, vous acceptez l'utilisation des cookies permettant de vous proposer des contenus personnalisés et de réaliser des statistiques.
Le titre de l’article est, paraît-il, l’inscription que Platon avait fait écrire à la porte d’entrée de son école de philosophie. C’est une légende, mais comme toutes les légendes, elle est belle et nous dit quelque chose. L’École d’Athènes fresque de Raphaël, Palais du Vatican, v. 1509-1510 Elle m’évoque la phrase de Sophia Kovalevskaya que j’ai mis en exergue de mon site, il est impossible d’être mathématicien sans être poète dans l’âme ». Sophia Kovalevskaya 1850-1891 Ces deux phrases posent le lien entre les mathématiques et la beauté, les mathématiques et la vérité, les mathématiques et la sagesse, la sagesse au sens philosophique. On se trompe à mon sens dans l’enseignement des mathématiques à l’école. On parle toujours de l’utilité des mathématiques, et certes, elles le sont, mais rares sont les élèves touchés par cet argument. Les mathématiques ne leur servent à rien dans l’immédiat, à part peut-être à contenter leurs parents et leurs professeurs, et à recevoir les honneurs du système scolaire. Je vous renvoie à un de mes anciens articles sur l’utilité des mathématiques. On gagnerait à parler de la beauté des mathématiques, et de la valeur des mathématiques, valeur avec un grand V, comme Vérité. Beauté mathématique. Les pavages du palais de l’Alhambra à Grenade. Que nous apprennent les mathématiques? Les mathématiques nous apprennent que le chemin est plus intéressant que le point d’arrivée, elles nous apprennent qu’on peut découvrir la vérité à l’aide du raisonnement, elles nous apprennent qu’il ne faut pas croire aveuglément ce qu’on nous dit, que la vérité peut être démontrée, et qu’elles est accessible à tous, pour peu qu’on en ai envie. Les mathématiques nous ouvrent les portes de mondes enchantés, dans les quels les droites parallèles peuvent se couper, les nombres peuvent être premiers, jumeaux, parfaits. Dans les quels la quatrième dimension est naturelle. Et maintenant, avec la puissance des ordinateurs, on peut voir les mathématiques! Les mathématiques sont belles et elles peuvent nous toucher, à l’instar d’un tableau ou d’un poème. Les mathématiques sont humaines et reflètent les préoccupations humaines, le désir de l’homme de s’élever et de tutoyer l’infini. Ceux qui aiment les mathématiques ne se préoccupent pas de savoir qu’elles servent à faire des avions ou des téléphones portables. Ils ne se préoccupent nécessairement de la valeur des solutions des équations, mais bien davantage à la méthode pour trouver une solution. Quand ils ont compris le concept, quand ils ont trouvé la méthode, ils laissent à d’autres le soin de finir les calculs. Comme pour le bonheur, le chemin est le plus important. Les mathématiques, tout comme l’art, ou le sport, aident à vivre, car la vie n’est pas faite que d’utilité, c’est une affaire de développement. Mieux comprendre, mieux réfléchir, mieux se connaître, se dépasser… Je suis tombée l’autre jour sur ce petit billet de Thibaut de Saint-Maurice sur France Inter, qui m’a inspiré ces réflexions. Il y parle, avec efficacité et lyrisme, de la valeur des mathématiques, en ce qu’elles rendent possible à chacun de nous de toucher l’universel. Les mathématiques nous apprennent l’importance du raisonnement en effet, on s’en fout de la valeur de x », et nous rendent plus sages en nous faisant prendre conscience que nous sommes capables de connaître une vérité universelle, et ce grâce à notre seul raisonnement. Une belle image de mathématiques, trouvée sur le site Images des maths.
Sujet Re: Que nul n'entre ici s'il n'est géomètre pour Quire Lun 8 Mai - 22:24 tu citais Platon au début mais au temps de Platon les mathématiques étaient essentiellement représenté par la géométrie, la plus empirique des branches des mathématique, il ne s'agissait donc pas à l'époque de théoriciens des mathématique que Platon invitaient à entrer
403 ERROR The Amazon CloudFront distribution is configured to block access from your country. We can't connect to the server for this app or website at this time. There might be too much traffic or a configuration error. Try again later, or contact the app or website owner. If you provide content to customers through CloudFront, you can find steps to troubleshoot and help prevent this error by reviewing the CloudFront documentation. Generated by cloudfront CloudFront Request ID Ach7q5gFD_hFim09xt93ghx90Bn6jgkeWV0t5k-zdZ4CT5HC3Hws-A==
Quenul n’entre ici s’il n’est géomètre, le « G » comme géométrie. La géométrie qui paraît science exacte est symbole dès l’antiquité : de mesure, de rectitude, et pour le compagnon que je suis d’aide à l’approche de la connaissance. Il m’a été dit « apprenez à le connaître, et qu’elle soit votre unique guide » La lettre « G » qui est présentée au
Que nul n'entre ici s'il n'est géomètre » Pour Platon, le monde s’appuie sur cinq éléments essentiels : le Feu, l’Air, l’Eau, la Terre et l’Univers. Il associe à chacun d’eux un polyèdre régulier inscriptible dans une sphère. Toutes ses
Luiqui disait si bien : « Que nul n’entre ici s’il n’est géomètre ». Toutefois, face aux multiples enjeux de développement, le gouvernement semble préoccupé par le rôle que doit jouer le géomètre dans la planification territoriale, la sécurisation foncière et
. 230 245 623 685 346 750 603 547
que nul n entre ici s il n est geometre